ELSEVIER

Journal of Molecular Catalysis A: Chemical

journal homepage: www.elsevier.com/locate/molcata

A DFT study on the behavior of NO₂ in the selective catalytic reduction of nitric oxides with ammonia on a V₂O₅ catalyst surface

Xiang Gao*, Xue-sen Du, Ye Jiang, Yang Zhang, Zhong-yang Luo, Ke-fa Cen

State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, PR China

ARTICLE INFO

Article history: Received 20 May 2009 Received in revised form 16 October 2009 Accepted 20 October 2009 Available online 30 October 2009

Keywords: Selective catalytic reduction NH₃ NO₂ Density functional theory V₂O₅

ABSTRACT

DFT calculations were carried out to study the behavior of NO₂ in the selective catalytic reduction of nitric oxides with ammonia on the surface of the V₂O₅ catalyst. The results showed that NO₂ could readily reoxidize V⁴⁺–OH through two reaction routes: (1) NO₂ directly reoxidizing V⁴⁺–OH to V⁵⁺=O and (2) NO₂ reacting with H₂O or NH₃ to produce HNO₃, which subsequently reoxidizes V⁴⁺–OH to V⁵⁺=O. The rate-determining step of route 1 is the desorption of *cis*–HNO₂ from the reoxidized V⁵⁺=O, being endothermic by 9.91 kcal/mol. Route 2 possesses an energy barrier of 7.44 kcal/mol, less than route 1. This energetic comparison shows that route 2 is the predominant reaction mechanism at low temperature. Reactions of the by-product, HNO₂, were also investigated. The results showed that both *cis*–HNO₂ (route 1) and *trans*-HNO₂ (route 2) can either react with NH₃, producing H₂O and N₂, or react with themselves, producing H₂O, NO and NO₂. A systemic description of the behavior for NO₂ in "fast" SCR on V₂O₅ surface, including the reaction routes and energy profiles, has been proposed in our work.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Selective catalytic reduction (SCR) with NH₃ is thought to be state-of-the-art technology for the abatement of NO_x emitted from stationary sources and vehicles [1,2]. Numerous experimental and theoretical studies have been carried out to reveal the SCR reaction mechanism over V₂O₅ catalysts [3–5]. The stoichiometry of the traditional SCR, known as the "standard" SCR, is given in Eq. (1):

$$4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O \tag{1}$$

Nevertheless, the current method of SCR over a V_2O_5 catalyst requires a high operation temperature (300–400 °C), which cannot be achieved in diesel engines and the low-temperature regions of stationary plants. One promising solution to this problem is represented by the "fast" SCR with stoichiometry:

$$2NH_3 + NO + NO_2 \rightarrow 2N_2 + 3H_2O \tag{2}$$

The promotional effect of NO₂ on the SCR reaction was first observed in 1981, when Kato et al. [6] reported that the reaction involving equimolar quantities of NO and NO₂ feed mixture (Eq. (2)) showed a considerably higher reaction rate than the "standard" SCR (Eq. (1)) at low temperatures. Thereafter, numerous authors [7–19] have dedicated themselves to the work of revealing the mechanism

* Corresponding author. E-mail address: xgao1@zju.edu.cn (X. Gao). of the "fast" SCR. Koebel et al. [7–10] have done significant work in this field, including giving the definition of "fast" SCR in 2001. They found that the "fast" SCR reaction exhibits a reaction rate at least 10 times higher than that of the well-known "standard" SCR reaction with pure NO. The reoxidation of V⁴⁺-OH by NO₂, O₂ in "standard" SCR, may be the main reason for enhancing the reaction rate of the "fast" SCR, according to their experimental results. They also pointed out that NH₄NO₃ will deposit on the catalyst surface at temperatures below 140°C. Nova et al. [11,12,14-16,18,20] have also done outstanding work in order to illuminate the mechanism of the "fast" SCR. They proposed a novel mechanism involving the formation of "ammonium nitrate" as an intermediate and its subsequent reaction with NO as the rate-determining step. The behavior of vanadium sites in the "ammonium nitrate" route has been well discussed by Tronconi et al. [13], who reported that reduced V⁴⁺–OH is not active in the SCR reaction. He also pointed out that both NO₂ and HNO₃ could reoxidize V^{4+} -OH to V^{5+} =O at lower temperatures than O₂ ("standard" SCR). The stoichiometry for the reaction of ammonium nitrate is shown in Eq. (3):

$$NH_4NO_3 + NO \rightarrow NO_2 + N_2 + H_2O \tag{3}$$

This reaction involves the decomposition of ammonium nitrate to HNO₃ and NH₃ and the redox of vanadium sites, as reported by several authors [11,12,16]. Li and Li performed a DFT study of the "fast" SCR over Fe-exchanged zeolites [21]. The result showed a significant promotional effect of NO₂ on the SCR reaction.

Although the behavior of NO_2 in the SCR reaction on V_2O_5 surface has been studied in numerous experiments, the delicate

^{1381-1169/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2009.10.020

reaction mechanism and energy profile have rarely been involved. Based on previous work, the behavior of NO₂ in the SCR reaction on the V₂O₅ surface could follow two reaction routes: (1) NO₂ directly reoxidizing V⁴⁺–OH to V⁵⁺=O and (2) NO₂ reacting with H₂O to produce HNO₃, which subsequently reoxidizes V⁴⁺–OH to V⁵⁺=O. The objective of the present study is to elucidate the full sequence of reaction steps including intermediates and transition state geometries, and the energetics of these two reaction routes. A systematic description of the behavior of NO₂ in the "fast" SCR is proposed.

2. Calculation details

All density functional theory (DFT) calculations were performed with Gaussian 03 [22] code using the gradient corrected Becke's [23,24] three-parameter hybrid exchange functional in combination with the correlation functional of Lee et al. [25] (B3LYP). The 6-31G(d,p) basis set was employed for all atoms. Each stationary structure has been confirmed as a minimum-energy structure or a transition state from the calculated vibrational frequencies. A geometry with no imaginary frequency (negative sign) indicates a minimum-energy structure, while a geometry with only one imaginary frequency implies a transition state. Zero point correction and vibrational frequencies obtained by frequency calculations were scaled by 0.9607 [26].

A model cluster $(V_2O_9H_{10})$ including two adjacent vanadium $(V^{4+}-OH)$ sites was used to represent the reduced V_2O_5 catalyst surface in this DFT study, as shown in Fig. 1. This model cluster has been successfully used in numerous publications [5,27–30]. The reduced V^{4+} –OH sites are produced after the reaction of NH₃ and NO on the V^{5+} =O sites [13]. To be in accordance with the real electronic environment of the periodic structure on the V_2O_5 catalyst surface, only the atoms in the dashed lines (Fig. 1) were relaxed, while the others were kept fixed in all the optimization processes. The coordinates and bond lengths of the fixed atoms are referred to in previous publications [5,30–35]. Frequency calculations were carried out to identify the applicability of the model cluster. The calculated frequency of the hydroxyl stretching for V⁴⁺–OH is 3680 cm⁻¹, in good agreement with the value 3655 cm⁻¹ measured by IR experiments on a reduced titania-supported vanadia catalyst [36]. This

Fig. 1. Optimized structure of the model cluster for the reduced V_2O_5 catalyst. Bond lengths are in Å.

suggests a good agreement between this model cluster and the real catalyst.

3. Results and discussion

3.1. Direct reoxidization of V^{4+} –OH by NO₂

3.1.1. The adsorption and reaction of NO₂ on V^{4+} –OH

NO₂ can readily reoxidize the V⁴⁺–OH sites, as pointed out by Koebel et al. [7–9], with the production of V⁵⁺=O and *cis*-HNO₂ (Fig. 2). The stoichiometry is shown in the following equation:

$$V^{4+}-OH + NO_2 \rightarrow V^{5+}=O + cis-HNO_2$$
(4)

As can be seen from Figs. 2 and 3, NO₂ is first adsorbed on to the cluster ($V_2O_9H_{10}$), an exothermic process, releasing 52.39 kcal/mol. Then the hydrogen of the V⁴⁺–OH will be captured by the adsorbed NO₂, producing an adsorbed HNO₂ on the cluster ($V_2O_9H_9$ –HNO₂, as shown in Fig. 2). This step releases an energy of 5.15 kcal/mol. Afterwards, with an activation energy of 9.91 kcal/mol, the *cis*-HNO₂ desorbs from the cluster, accomplishing the reoxidization of V⁴⁺–OH to V⁵⁺=O ($V_2O_9H_9$ in Fig. 2). The $V_2O_9H_9$ includes a

Fig. 2. Optimized structures of all the stationary points in the direct reoxidization of V⁴⁺-OH by NO₂. Bond lengths are in Å.

Fig. 3. Energy profile for direct reoxidization of $V^{4+}\text{-}OH$ by NO_2 (relative to $V_2O_9H_{10}$ + NO_2).

 $V^{5+}{=}O$ and a $V^{4+}{-}OH,$ which can be further oxidized by NO_2 or other species.

Frequency calculations for $V_2O_9H_{10}$ – NO_2 were carried out to compare with the experimental results of Dines et al. [36]. This comparison shows excellent agreement between the frequencies 1585, 1202 and 1620, 1225 cm⁻¹ for the calculated and experimental results, respectively. The calculation shows that the hydroxyl of HNO₂ in $V_2O_9H_9$ –HNO₂ possesses a swinging frequency at 1349 cm⁻¹, while the experimental result [37] turns out to be 1218 cm⁻¹. The difference between calculation and experiment may be attributed to the fact that the adsorption of HNO₂ on a real catalyst surface will be influenced by the support. The V⁵⁺=O has a stretching frequency at 1062 cm⁻¹, according to the frequency calculation for V₂O₉H₉, in excellent agreement with the experimental result [37] of 1032 cm⁻¹.

3.1.2. Reaction of the by-product cis-HNO₂

The reactions of *cis*-HNO₂ are discussed in this subsection. Savara et al. [17] found that NH_4NO_2 could readily decompose at the temperatures less than 100 °C to N_2 and H_2O . In our work, quantum chemistry calculations were carried out to reveal the reaction of HNO₂ and NH_3 . The products of the reaction between HNO₂ and NH_3 were H_2O and nitrosamide (H_2NNO), which is thought to be the key intermediate in the SCR reaction [5]. H_2NNO could further transform and decompose on V_2O_5 catalyst surface to N_2 and H_2O , the desired end products. The reaction between HNO_2 and NH_3 could be described as the following equation (Eq. (5)):

$$cis-HNO_2 + NH_3 \rightarrow H_2NNO + H_2O$$
 (5)

The reaction between cis-HNO₂ and NH₃ on the catalyst surface has two types, i.e. reaction of adsorbed NH₃ with gaseous cis-HNO₂ and reaction of adsorbed cis-HNO₂ with gaseous NH₃. As can be seen from Fig. 4, reaction of adsorbed NH₃ with gaseous cis-HNO₂ (A1–A5) starts with the NH₃ adsorption on the catalyst surface with an exothermic energy of 12.85 kcal/mol. Gaseous cis-HNO₂ will further react with the adsorbed NH₃ to produce adsorbed H₂NNO–H₂O (A4, both H₂O and H₂NNO are adsorbed on the catalyst surface) via a transition state (A3), costing an activation energy of 29.98 kcal/mol. In A3, a hydrogen of the adsorbed NH₃ is being transferred to one oxygen of the cis-HNO₂, simultaneously a N–N bond between NH₃ and HNO₂ is being formed. Given an endothermic energy of 25.20 kcal/mol, both H₂O and H₂NNO could desorb from the catalyst surface. H₂NNO will re-adsorb on active site to produce N₂ and H₂O.

Reaction of adsorbed *cis*-HNO₂ with gaseous NH₃ (B1–B5) starts with the *cis*-HNO₂ adsorption on the catalyst surface with an exothermic energy of 9.11 kcal/mol. The adsorbed *cis*-HNO₂ will react with gaseous NH₃ via a transition state (B3) with an activation energy of 25.99 kcal/mol. Desorption of the products, H₂O and H₂NNO will be endothermic by 18.40 kcal/mol.

The reaction between two *cis*-HNO₂ has been studied by Mebel et al. [38]. In our present work, this reaction was calculated to compare with the reaction between HNO₂ and NH₃, aiming at revealing the real behavior of the by-product *cis*-HNO₂. According to Eq. (6), *cis*-HNO₂ would react with each other to produce H₂O, NO and NO₂:

$$cis-HNO_2 + cis-HNO_2 \rightarrow NO_2 + NO + H_2O$$
 (6)

Cis-HNO₂ can be readily adsorbed onto the catalyst surface. Thus Eq. (6) will happen between adsorbed HNO₂ and gaseous HNO₂. The energy profile of this reaction is shown in Fig. 4 (C1–C5). Adsorbed HNO₂ and gaseous HNO₂ will react to produce adsorbed H₂O–NO–NO₂ (C4, H₂O, NO and NO₂ adsorbed on the catalyst surface) via a transition state (C3). In C4, a hydrogen of

Fig. 4. Energy profile for the reaction between adsorbed NH₃ and gaseous HNO₂ (A1–A5, relative to NH₃ + *cis*-HNO₂); adsorbed HNO₂ and gaseous NH₃ (B1–B5, relative to NH₃ + *cis*-HNO₂), adsorbed *cis*-HNO₂ and gaseous *cis*-HNO₂ (C1–C5, relative to *cis*-HNO₂). 'ad-' indicates the adsorbed species on the catalyst surface. The values (given in kcal/mol) on the right side of this figure are the corresponding relative energies.

Fig. 5. Optimized structures of all the stationary points in the reaction of NO₂ with H₂O. Bond lengths are in Å.

gaseous *cis*-HNO₂ is being transferred to the hydroxy oxygen of a adsorbed *cis*-HNO₂. This process would cost an activation energy of 5.01 kcal/mol and has an exothermic energy of 3.45 kcal/mol. H₂O, NO and NO₂ will desorb from the catalyst surface, being endothermic by 17.01 kcal/mol.

In summary, *cis*-HNO₂ could either react with NH₃ or *cis*-HNO₂. The reaction of adsorbed NH₃ with gaseous *cis*-HNO₂ and adsorbed *cis*-HNO₂ with gaseous NH₃ will cost a barrier energy of 29.98 and 25.99 kcal/mol, respectively. Nevertheless, the reaction between two *cis*-HNO₂ (Eq. (6)) just has a barrier energy of 18.40 kcal/mol. Thus, the by-product *cis*-HNO₂ prefers the reaction of two *cis*-HNO₂ to produce H₂O, NO and NO₂ in low temperature. This result shows a good agreement with the work of Koebel et al. [9], which revealed that the reoxidization of V⁴⁺–OH by NO₂ would produce H₂O and NO.

3.2. Reoxidization of V^{4+} –OH by HNO₃ (produced by the reaction of NO₂ with H₂O or NH₃)

3.2.1. Reaction of NO₂ with H₂O and NH₃

 HNO_3 acting as an intermediate to reoxidize V⁴⁺–OH has been published by several authors [11–16]. As known for a long time, NO_2 can readily react with H₂O with a production of *trans*-HNO₂ and HNO₃. The stoichiometry is given in the following equation:

$$2NO_2 + H_2O \rightarrow trans-HNO_2 + HNO_3 \tag{7}$$

In this subsection, DFT calculation was performed to study the reaction route of Eq. (7) (Figs. 5 and 6). This reaction starts from the combination of H₂O and two NO₂ (N₂O₄-H₂O in Fig. 5), producing an exothermic energy of 6.58 kcal/mol. N₂O₄-H₂O further converts to HNO₂-HNO₃ via a transition state (TS), costing an activation energy of 2.53 kcal/mol. This transforming process yields an exothermic energy of 7.39 kcal/mol. Afterwards, HNO₂-HNO₃ decomposes to *trans*-HNO₂ and HNO₃ (Fig. 5) accompanying with an endothermic energy of 7.13 kcal/mol. The energy profile indicates that decomposition of HNO₂-HNO₃ to *trans*-HNO₂ and HNO₃ is the control step of the reaction between NO₂ and H₂O.

The reaction between NO₂ and NH₃ has also been largely reported by several authors [11,13,15]. NO₂ can react with NH₃ at low temperature to produce NH₄NO₃, N₂ and H₂O, as shown in Eq. (8). NH₄NO₃ can readily decompose to NH₃ and HNO₃ at the SCR temperature:

$$2\mathrm{NO}_2 + 2\mathrm{NH}_3 \rightarrow \mathrm{H}_2\mathrm{O} + \mathrm{N}_2 + \mathrm{NH}_4\mathrm{NO}_3 \tag{8}$$

The reaction route and energy profile of reaction between NO₂ and NH₃ are shown in Figs. 7 and 8, respectively. In the transition state (TS) of Fig. 7, a hydrogen of NH₃ is being transferred to the oxygen of NO₂ and a N–N bond is being formed. The activation energy is only 2.34 kcal/mol. The largest energy barrier of this reaction is 4.12 kcal/mol, consumed by the decomposition of H₂NNO–HNO₃. H₂NNO will further transform to H₂O and N₂, and HNO₃ can readily combine with NH₃ to produce NH₄NO₃, thus this calculation is accordant with Eq. (8). Low barrier energy confirms the results found by other authors [11,13,15].

3.2.2. Reoxidation of V^{4+} –OH by HNO₃

 HNO_3 (one of the products in reactions (7) and (8)) is a strong oxidizing agent and can easily reoxidize V⁴⁺–OH to V⁵⁺=O, following Eqs. (9) and (10):

$$V^{4+}-OH + HNO_3 \rightarrow V^{5+}-NO_3 + H_2O$$
 (9)

$$V^{5+}-NO_3 \rightarrow V^{5+}=0 + NO_2$$
 (10)

Fig. 6. Energy profile for the reaction between NO_2 and H_2O (relative to $NO_2 + NO_2 + H_2O).$

Fig. 7. Optimized structures of all the stationary points in the reaction of NO₂ with NH₃. Bond lengths are in Å.

Fig. 9 exhibits the optimized structures in the reoxidation process by HNO₃. The energy in Fig. 10 is given relative to the total energy of $V_2O_9H_{10}$ + HNO₃. Initially, HNO₃ is adsorbed on to the $V_2O_9H_{10}$ cluster ($V_2O_9H_{10}$ -HNO₃), releasing an energy of 14.28 kcal/mol. Then, V₂O₉H₁₀-HNO₃ is transformed to a V₂O₈H₉-NO₃-H₂O cluster in which H₂O is adsorbed on the $V_2O_8H_9-NO_3$ cluster, via a transition state (TS1). In TS1, the hydrogen of HNO₃ is being transferred to the hydroxyl oxygen of V⁴⁺–OH accompanied by the weakening of the interaction between vanadium and the hydroxyl. Meanwhile, the interaction between the oxygen of HNO₃ and vanadium of V^{4+} -OH is being formed. This process possesses an activation energy of 4.5 kcal/mol and an exothermic energy of 3.96 kcal/mol. The H₂O in the V₂O₈H₉–NO₃–H₂O, cluster will desorb from the V₂O₈H₉–NO₃ (Fig. 9), since it is endothermic by 6.58 kcal/mol. Afterwards, $V_2O_8H_9-NO_3$ will transform into $V_2O_9H_9$, with the production of NO₂, via a transition state (TS2). In TS2, NO₂ is desorbing from $V_2O_9H_9$, and simultaneously a $V^{5+}=O$ bond is being formed. This NO₂ desorption process, costing an activation energy of 7.44 kcal/mol and finally being exothermic by 41.06 kcal/mol, turns out to be the rate-determining step of the reoxidation reaction. The release of NO₂ from the reoxidation of V⁴⁺–OH by HNO₃ has

Fig. 8. Energy profile for the reaction between NO_2 and NH_3 (relative to $NO_2 + NO_2 + NO_2 + NH_3).$

been confirmed by an experiment carried out by several authors [8,11,12,16].

Frequency calculations were carried out to compare with the experimental results of several publications. In our work, the HNO₃ cluster adsorbed on to $V_2O_9H_{10}$ has a stretching frequency of 1265 cm⁻¹, in good agreement with the 1252 cm⁻¹ measured by Miyata and co-workers. Dines et al. [36] reported in 1991 that NO₂ adsorbed on to a V_2O_5 surface would produce a bidentate nitrato (V⁵⁺–NO₃), which has a v3 vibration at 1572 cm⁻¹, in accordance with the 1596 cm⁻¹ from our calculation for $V_2O_8H_9$ –NO₃.

3.2.3. Reaction of the by-product trans-HNO₂

One of the products of reaction (7), *trans*-HNO₂, can either react with NH₃ to give H₂NNO and H₂O (Eq. (11)) or another *trans*-HNO₂ to produce NO, NO₂ and H₂O (Eq. (12)). Reactions (11) and (12) were both investigated with DFT calculations. The relative energy profiles are given in Fig. 11.

The reaction between *trans*-HNO₂ and NH₃ on the catalyst surface also has two types, i.e. reaction of adsorbed NH₃ with gaseous *trans*-HNO₂ (D1–D5) and reaction of adsorbed *trans*-HNO₂ with gaseous NH₃ (E1–E5). The reaction between adsorbed NH₃ and gaseous *trans*-HNO₂ starts from the adsorption of NH₃ on to the catalyst surface, which is exothermic by 12.85 kcal/mol. In the transition state D3 (Fig. 11), one hydrogen from the NH₃ is being transferred to the hydroxyl oxygen of *trans*-HNO₂, resulting in the formation of H₂O and H₂NNO (readily transform to N₂ and H₂O [5]). The whole process costs an activation energy of 28.04 kcal/mol and eventually has an exothermic energy of 7.27 kcal/mol:

$$trans-HNO_2 + NH_3 \rightarrow H_2NNO + H_2O \tag{11}$$

The other type of Eq. (11) is the reaction of adsorbed *trans*- HNO_2 and gaseous NH₃. This reaction possesses an energy barrier of 24.06 kcal/mol, consumed by the transformation of E4–E5, i.e. the desorption of H₂O and H₂NNO from the catalyst surface.

Reaction (12)(Eq. (12)) occurs between two *trans*-HNO₂. In transition state F3, one hydrogen of *trans*-HNO₂ is being transferred to the hydroxyl oxygen of the adsorbed *trans*-HNO₂, costing an activation energy of 5.04 kcal/mol and producing F4 (H₂O, NO and NO₂ adsorbed on the catalyst surface). Afterwards, H₂O, NO and NO₂ will desorb from the catalyst surface, consuming an energy of

Fig. 9. Optimized structures of all the stationary points in the reoxidization of V⁴⁺-OH by HNO₃. Bond lengths are in Å.

24.05 kcal/mol:

$$trans-HNO_2 + trans-HNO_2 \rightarrow NO_2 + NO + H_2O$$
(12)

The comparison between reactions (11) (two types) and (12) shows a similar energy profile. The energy barriers of these three reactions are 28.04 kcal/mol (adsorbed NH₃ with gaseous *trans*-HNO₂), 24.06 kcal/mol (adsorbed *trans*-HNO₂ with gaseous NH₃)

Fig. 10. Energy profile for the reoxidization of $V^{4*}\text{-}OH$ by HNO_3 (relative to $V_2O_9H_{10}$ + $HNO_3).$

and 24.05 kcal/mol (adsorbed *trans*-HNO₂ with gaseous *trans*-HNO₂). Thus, reactions (11) and (12) can equally happen on the catalyst surface.

3.3. Discussion

The first step of the SCR reaction is the reaction of NH_3 and NO on $V^{5+}=O$, causing a reduction of $V^{5+}=O$ to $V^{4+}-OH$ (Eq. (13)) [3]:

$$V^{5+}=0 + NH_3 + NO \rightarrow V^{4+}-OH + H_2O + N_2$$
 (13)

The reduced V⁴⁺–OH must be reoxidized in order to participate in the SCR reaction, as revealed by several authors [9,13]. NO₂ can reoxidize V⁴⁺–OH via two reaction routes, as discussed in Sections 3.1 and 3.2. Fig. 12 shows the behavior of NO₂ in the reoxidation of V⁴⁺–OH to V⁵⁺=O. The rate-determining step of route 1 (the direct reoxidation of V⁴⁺–OH by NO₂) is the desorption of *cis*–HNO₂ from V₂O₉H₉, with an activation energy of 9.91 kcal/mol. Route 2 (the reoxidation of V⁴⁺–OH by HNO₃ produced by the reaction of NO₂ with H₂O or the reaction of NO₂ with NH₃) costs a lower activation energy of 7.44 kcal/mol, as required by the transformation of V⁵⁺–NO₃ to V⁵⁺=O and NO₂. Accordingly, route 2 is more predominant than route 1 at low temperatures, in accordance with numerous publications [8,11–13,15]; these have proposed that nitrate is much more important for the "fast SCR" at temperatures below 200 °C.

Both routes 1 and 2 will produce nitrous $acid (cis-HNO_2 by route 1, trans-HNO_2 by route 2)$. The calculations show that both *cis*-HNO₂ and *trans*-HNO₂ can either react with NH₃, producing H₂O

Fig. 11. Energy profile for the reaction between adsorbed NH₃ and gaseous *trans*-HNO₂ (D1–D5, relative to NH₃ + *cis*-HNO₂); adsorbed *trans*-HNO₂ and gaseous NH₃ (E1–E5, relative to NH₃ + *trans*-HNO₂), adsorbed *trans*-HNO₂ and gaseous trans-HNO₂ (F1–F5, relative to *trans*-HNO₂). 'ad-' indicates the adsorbed species on the catalyst surface. The values (given in kcal/mol) on the right side of this figure are the corresponding relative energies.

and N₂, or react with themselves, producing H₂O, NO and NO₂. The energy profile shows that *cis*-HNO₂ would rather react with itself than react with NH₃. Energy profiles indicated that the reaction between two *cis*-HNO₂ has an energetic advantage of more than 7.5 kcal/mol than the reaction between *cis*-HNO₂ and NH₃. Nevertheless, *trans*-HNO₂ can equally react with itself or with NH₃ on the catalyst surface.

The combination of route 1 (Eq. (4)) and the preferred reaction (Eq. (6)) of its by-product, *cis*-HNO₂, is given in Eq. (14). This stoichiometry is in close agreement with the experimental results reported by Koebel et al. [9], who found that the reoxidation of the V_2O_5 catalyst follows the reaction given in Eq. (13) in the absence of NH₃. NO will further react with NH₃ over the reoxidized V_2O_5 surface, according to Eq. (13). Therefore, the overall stoichiometry turns out to be the equation of the "fast SCR" (Eq. (2)):

$$2V^{4+}-OH + NO_2 \rightarrow 2V^{5+}=O + H_2O + NO$$
 (14)

Fig. 12. Reaction routes for the reoxidization of V⁴⁺–OH by NO₂. Route 1 represents the direct reoxidization of V⁴⁺–OH by NO₂; route 2 represents the reoxidization of V⁴⁺–OH by HNO₃ produced by the reaction of NO₂ with H₂O or NH₃.

The overall stoichiometry of route 2, combining the reactions of Eq. (7), 11(12), 9, 10, 13 or 8, 9, 10, 13, is also in accordance with the main reaction of the "fast SCR" (Eq. (2)). The reaction between NH₄NO₃ and NO over V₂O₅ catalyst reported by Koebel et al. [8], Ciardelli et al. [11] and Nova et al. [12] can also be well explained by route 2. Initially, NH₄NO₃ decomposes to NH₃ and HNO₃. Then HNO₃ can readily reoxidize V⁴⁺–OH according to Eqs. (9) and (10). Afterwards, the reoxidized V⁵⁺=O will be reduced following the reaction of Eq. (13). The overall reaction is given in Eq. (15):

$$NH_4NO_3 + NO \rightarrow NO_2 + N_2 + H_2O \tag{15}$$

4. Conclusion

DFT calculations have been carried out to study the behavior of NO₂ in the selective catalytic reduction of nitric oxides with ammonia on the V_2O_5 catalyst surface at the B3LYP/6-31G(d,p) level. The results show that NO₂ can readily reoxidize V⁴⁺-OH through two reaction routes: (1) NO₂ directly reoxidizes V⁴⁺-OH to $V^{5+}=0$ and (2) NO₂ reacts with H₂O or NH₃ to produce HNO₃, which subsequently reoxidizes V^{4+} -OH to $V^{5+}=0$. For these two reaction channels, we have explored the respective energy profiles and identified the corresponding rate-determining steps. The rate-determining step of route 1 is the desorption of *cis*-HNO₂ from the reoxidized V⁵⁺=O, being endothermic by 9.91 kcal/mol. Route 2 possesses an activation energy of 7.44 kcal/mol (less than route 1), consumed in the desorption of NO₂ from V⁵⁺=O. Energetic comparisons show that route 2 is the predominant reaction mechanism at low temperature. Frequency calculations of the species, including V⁵⁺=O, V⁴⁺–OH, NO₂ adsorbed on V⁴⁺–OH, HNO₂ adsorbed on $V^{5+}=0$ and HNO_3 adsorbed on V^{4+} –OH, agree well with previous experimental results carried out by other authors, confirming the rationality of our model cluster.

The reactions of the by-product, HNO₂, were also investigated. The by-product of route 1, *cis*-HNO₂, can either react with NH₃ or another *cis*-HNO₂. The reaction of two *cis*-HNO₂ producing H₂O, NO and NO₂ has an activation energy of 18.40 kcal/mol, while the reaction between *cis*-HNO₂ and NH₃ possesses a considerably higher energy barrier of 25.99 kcal/mol (reaction of adsorbed *cis*-HNO₂ with gaseous NH₃). The energy profile for the behavior of *trans*-HNO₂, the by-product of route 2, shows difference to that for *cis*-HNO₂. The rate-determining step of the reaction between two *trans*-HNO₂ and the reaction between *trans*-HNO₂ and NH₃ will cost activation energies of 24.05 kcal/mol and 24.06 kcal/mol (reaction of adsorbed *cis*-HNO₂ with gaseous NH₃), respectively. These results showed that both *cis*-HNO₂ (route 1) prefer to reacting with themselves, producing H₂O, NO and NO₂, rather than reacting with NH₃. Nevertheless, *trans*-HNO₂ will equally react with itself, producing H₂O, NO and NO₂ or with NH₃, producing H₂O and N₂ on the catalyst surface. A systematic description of the behavior for NO₂ in the "fast" SCR has been proposed in our work, as shown in Fig. 12.

Acknowledgements

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 50776079) and Development of China (863 Program) (No. 2007AA061802).

References

- G. Busca, L. Lietti, G. Ramis, F. Berti, Applied Catalysis B: Environmental 18 (1998) 1–36.
- [2] J. Due-Hansen, S. Boghosian, A. Kustov, P. Fristrup, G. Tsilomelekis, K. Stahl, C.H. Christensen, R. Fehrmann, Journal of Catalysis 251 (2007) 459–473.
- [3] G. Ramis, G. Busca, F. Bregani, P. Forzatti, Applied Catalysis 64 (1990) 259–278. [4] N.Y. Tonsoe, Science 265 (1994) 1217–1219
- [4] N.Y. Topsoe, Science 265 (1994) 1217–121
- [5] S. Soyer, A. Uzun, S. Senkan, I. Onal, A Quantum Chemical Study of Nitric Oxide Reduction by Ammonia (SCR reaction) on V₂O₅ Catalyst Surface, Elsevier Science B.V., Hancock, MA, 2005, pp. 268–278.
- [6] A. Kato, S. Matsuda, F. Nakajima, M. Imanari, Y. Watanabe, Journal of Physical Chemistry 85 (1981) 1710–1713.
- [7] M. Koebel, M. Elsener, G. Madia, Industrial & Engineering Chemistry Research 40 (2001) 52–59.
- [8] M. Koebel, G. Madia, M. Elsener, Catalysis Today 73 (2002) 239–247.
- [9] M. Koebel, G. Madia, F. Raimondi, A. Wokaun, Journal of Catalysis 209 (2002) 159–165.
- [10] G. Madia, M. Koebel, M. Elsener, A. Wokaun, Industrial & Engineering Chemistry Research 41 (2002) 4008–4015.
- [11] C. Ciardelli, I. Nova, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, Chemical Communications (2004) 2718-2719.
- [12] I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, Catalysis Today 114 (2006) 3–12.
- [13] E. Tronconi, I. Nova, C. Ciardelli, D. Chatterjee, M. Weibel, Journal of Catalysis 245 (2007) 1–10.
- [14] C. Ciardelli, I. Nova, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, M. Weibel, B. Krutzsch, Applied Catalysis B: Environmental 70 (2007) 80–90.
- [15] C. Ciardelli, I. Nova, E. Tronconi, D. Chatterjee, T. Burkhardt, M. Weibel, Chemical Engineering Science 62 (2007) 5001–5006.

- [16] I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, M. Weibel, Topics in Catalysis 42–43 (2007) 43–46.
- [17] A. Savara, M.J. Li, W.M.H. Sachtler, E. Weitz, Applied Catalysis B: Environmental 81 (2008) 251–257.
- [18] E. Tronconi, I. Nova, C. Ciardelli, D. Chatterjee, B. Bandl-Konrad, T. Burkhardt, Catalysis Today 105 (2005) 529–536.
- [19] J.H. Goo, M.F. Irfan, S.D. Kim, S.C. Hong, Chemosphere 67 (2007) 718-723.
- [20] C. Ciardelli, I. Nova, E. Tronconi, M. Ascherfeld, W. Fabinski, Topics in Catalysis 42-43 (2007) 161-164.
- [21] J. Li, S.H. Li, Journal of Physical Chemistry C 112 (2008) 16938-16944.
- [22] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B. 02, Gaussian Inc., Pittsburgh PA, 2003.
- [23] A.D. Becke, Journal of Chemical Physics 98 (1993) 5648-5652.
- [24] A.D. Becke, Physical Review A 38 (1988) 3098-3100.
- [25] C.T. Lee, W.T. Yang, R.G. Parr, Physical Review B 37 (1988) 785-789.
- [26] M.D. Halls, J. Velkovski, H.B. Schlegel, Theoretical Chemistry Accounts 105 (2001) 413-421.
- [27] A. Gora, E. Broclawik, Journal of Molecular Catalysis A: Chemical 215 (2004) 187–193.
- [28] E. Broclawik, A. Gora, M. Najbar, The Role of Tungsten in Formation of Active Sites for no SCR on the V–W–O Catalyst Surface–Quantum Chemical Modeling (DFT), Elsevier Science B.V., Leuven, Belgium, 1999, pp. 31–38.
- [29] A. Gora, E. Broclawik, M. Najbar, Quantum Chemical Modeling (DFT) of Active Species on the V–W–O Catalyst Surface in Various Redox Conditions, Pergamon–Elsevier Science Ltd., Szklarska, Poland, 1999, pp. 405–410.
- [30] N.A. Kachurovskaya, E.P. Mikheeva, G.M. Zhidomirov, Journal of Molecular Catalysis A: Chemical 178 (2002) 191–198.
- [31] M. Witko, K. Hermann, R. Tokarz, Adsorption and Reactions at the (010) V₂O₅ Surface: Cluster Model Studies, Elsevier Science B.V., San Francisco, CA, 1999, pp. 553–565.
- [32] M. Calatayud, B. Mguig, C. Minot, Surface Science 526 (2003) 297–308.
- [33] M. Calatavud, F. Tielens, F. De Proft, Chemical Physics Letters 456 (2008) 59–63.
- [34] M. Calatayud, C. Minot, Reactivity of the V₂0₅-TiO₂-Anatase Catalyst: Role of the Oxygen Sites, Springer/Plenum Publishers, Philadelphia, PA, 2004, pp. 17–26.
- [35] A. Michalak, M. Witko, K. Hermann, Surface Science 375 (1997) 385–394.
- [36] T.J. Dines, C.H. Rochester, A.M. Ward, Journal of the Chemical Society, Faraday Transactions 87 (1991) 1617–1622.
- [37] H. Miyata, S. Konishi, T. Ohno, F. Hatayama, Journal of the Chemical Society, Faraday Transactions 91 (1995) 1557–1562.
- [38] A.M. Mebel, M.C. Lin, C.F. Melius, Journal of Physical Chemistry A 102 (1998) 1803-1807.